Lesson plan

Name of the faculty	:	Er. Gaurav Kumar
Discipline	:	Electronics & Communication Engineering
Semester	:	6 th
Subject	:	Control system (Paper Code: PCC-EE-305-G)
Lesson Plan Duration	:	15 weeks (From May 2021 to Sep 2021)

Work Load (Lecture/ Practical) per week (in hours): Lecture-03, Practical-01

Week	Theory		Practical	
	Lecture day	Topic(Including assignment/test)	Practical Day	Торіс
1 st	1 st	Introduction to control problem (4hours)Industrial Control examplesMathematical models of physicalsystemsControl hardware and their models.Transfer function models of lineartime-invariant systems	1 st	To study speed Torque characteristics of a) A.C. servo motor b) DC servo motor
2 nd	1 st	Feedback Control: Open-Loop and Closed-loop systems Benefits of Feedback. Block diagram algebra.	2 nd	(a) To demonstrate simple motor driven closed loop DC position control system
3 rd	1 st	Time Response Analysis (10 hours)Standard test signalsTime response of first and second order systems for standard test inputs	3 rd	To study and demonstrate simple closed loop speed control system
4 th	1 st	Application of initial and final value theoremDesign specifications for second-order systems based on the time-response.	4 th	To study the lead, lag, lead-lag compensators and to draw their magnitude and phase plots.
5 th	1 st	Concept of Stability. Routh-Hurwitz Criteria	5 th	To study a stepper motor & to execute microprocessor or computer-based control of

	2 nd	Relative Stability analysis		the same by changing number of steps, direction of rotation & speed.
6 th	1 st	Root-Locus technique Construction of Root-loci.	- 6 th	To implement a PID controller for temperature control of a pilot plant
7 th		Sessional -I Examina	ntion+Activ	ity
8 th	1 st	Frequency-responseanalysis(6hours)Relationship between time and frequency responsePolar plots	8 th	To study behavior of 1 order,2 order type 0, type 1 system.
9 th	1 st 2 nd	Bode plots Bode plots continue	- 9 th	To study control action of light control device
10 th	1 st 2 nd	Nyquist stability criterion Relative stability using Nyquist criterion – gain and phase margin	- 10 th	To study water level control using a industrial PLC
11 th	1 st	Closed-loop frequency response Introduction to Controller Design (10 hours) Stability		To study motion control of a conveyor belt using a industrial PLC
12 th	1 st	steady-state accuracy, transient accuracy disturbance rejection, insensitivity and robustness of control systems	12 th	MATLAB BASED (ANY FOUR EXPT.) 10. Introduction to MATLAB (Control System Toolbox), Implement at least any

				Different Toolboxes in MATLAB, Introduction to Control Systems Toolbox	
	1 st	Root-loci method of feedback controller design		Determine transpose, inverse values of given matrix.	
13 th	2 nd	Design specifications in frequency-domain	13 th	Plot the pole-zero configuration in s-plane for the given transfer function. Plot unit step response of given transfer function and find peak overshoot, peak time	
14 th	1 st	Frequency-domain methods of design. Application of Proportional, Integral and Derivative Controllers	14 th	Plot unit step response and to find rise time and delay time	
	2 nd	Lead and Lag compensation in designs			
1 5 th	1 st	Analog and Digital implementation of controllers	1 5 th	Plot locus of given transfer function, locate closed loop poles for different values of	
15 th 2 nd	State variable Analysis (6 hours)Concepts of state variables	- 15 th	k.		
		State space model. Diagonalization of State Matrix. Solution of state equations		Plot root locus of given transfer function and to find out S, Wd, Wn at given root & to discuss stability.	
16 th		Eigen values and Stability Analysis. Concept of controllability and observability		Plot bode plot of given transfer function and find gain and phase margins Plot the Nyquist plot for given transfer function and to discuss closed loop stability, gain and phase margin.	
17 th	Sessional -II Examination+Activity				