Lesson plan

Name of the faculty : Er. Gaurav Kumar
Discipline : Electronics \& Communication Engineering
Semester $: 6^{\text {th }}$
Subject $\quad:$ Control system (Paper Code: PCC-EE-305-G)
Lesson Plan Duration : 15 weeks (From May 2021 to Sep 2021)
Work Load (Lecture/ Practical) per week (in hours): Lecture-03, Practical-01

Week	Theory		Practical	
	Lecture day	Topic(Including assignment/test)	Practical Day	Topic
$1^{\text {st }}$	$1^{\text {st }}$	Introduction to control problem (4 hours) Industrial Control examples Mathematical models of physical systems	$1^{\text {st }}$	To study speed Torque characteristics of a) A.C. servo motor b) DC servo motor
	$2^{\text {nd }}$	Control hardware and their models. Transfer function models of linear time-invariant systems		
$2^{\text {nd }}$	$1^{\text {st }}$	Feedback Control: Open-Loop and Closed-loop systems	$2^{\text {nd }}$	(a) To demonstrate simple motor driven closed loop DC position control system
	$2^{\text {nd }}$	Benefits of Feedback. Block diagram algebra.		
$3^{\text {rd }}$	$1^{\text {st }}$	Time Response Analysis (10 hours) Standard test signals	$3^{\text {rd }}$	To study and demonstrate simple closed loop speed control system
	$2^{\text {nd }}$	Time response of first and second order systems for standard test inputs		
$4^{\text {th }}$	$1^{\text {st }}$	Application of initial and final value theorem	$4^{\text {th }}$	To study the lead, lag, lead-lag compensators and to draw their magnitude and phase plots.
	$2^{\text {nd }}$	Design specifications for second-order systems based on the time-response.		
$5^{\text {th }}$	$1^{\text {st }}$	Concept of Stability. Routh-Hurwitz Criteria	$5^{\text {th }}$	To study a stepper motor \& to execute microprocessor or computer-based control of

	$2^{\text {nd }}$	Relative Stability analysis		the same by changing number of steps, direction of rotation \& speed.
$6^{\text {th }}$	$1^{\text {st }}$	Root-Locus technique	$6^{\text {th }}$	To implement a PID controller for temperature control of a pilot plant
	$2^{\text {nd }}$	Construction of Root-loci.		
$7^{\text {th }}$	Sessional -I Examination+Activity			
$8^{\text {th }}$	$1^{\text {st }}$	Frequency-response analysis (6 hours) Relationship between time and frequency response	$8^{\text {th }}$	To study behavior of 1 order, 2 order type 0 , type 1 system.
	$2^{\text {nd }}$	Polar plots		
$9^{\text {th }}$	$1^{\text {st }}$	Bode plots	$9^{\text {th }}$	To study control action of light control device
	$2^{\text {nd }}$	Bode plots continue......		
$10^{\text {th }}$	$1^{\text {st }}$	Nyquist stability criterion	$10^{\text {th }}$	To study water level control using a industrial PLC
	$2^{\text {nd }}$	Relative stability using Nyquist criterion - gain and phase margin		
$11^{\text {th }}$	$1^{\text {st }}$	Closed-loop frequency response	$11^{\text {th }}$	To study motion control of a conveyor belt using a industrial PLC
	$2^{\text {nd }}$	Introduction to Controller Design (10 hours) Stability		
$12^{\text {th }}$	$1{ }^{\text {st }}$	steady-state accuracy, transient accuracy	$12^{\text {th }}$	MATLAB BASED (ANY FOUR EXPT.)
	$2^{\text {nd }}$	disturbance rejection, insensitivity and robustness of control systems		10. Introduction to MATLAB (Control System Toolbox), Implement at least any

				Different Toolboxes in MATLAB, Introduction to Control Systems Toolbox
$13^{\text {th }}$	$1{ }^{\text {st }}$	Root-loci method of feedback controller design	$13^{\text {th }}$	Determine transpose, inverse values of given matrix. Plot the pole-zero configuration in s-plane for the given transfer function. Plot unit step response of given transfer function and find peak overshoot, peak time
	$2^{\text {nd }}$	Design specifications in frequency-domain		
$14^{\text {th }}$	$1{ }^{\text {st }}$	Frequency-domain methods of design. Application of Proportional, Integral and Derivative Controllers	$14^{\text {th }}$	Plot unit step response and to find rise time and delay time
	$2^{\text {nd }}$	Lead and Lag compensation in designs		
$15^{\text {th }}$	$1{ }^{\text {st }}$	Analog and Digital implementation of controllers	$15^{\text {th }}$	Plot locus of given transfer function, locate closed loop poles for different values of k.
	$2^{\text {nd }}$	State variable Analysis (6 hours) Concepts of state variables		
$16^{\text {th }}$		State space model. Diagonalization of State Matrix. Solution of state equations		Plot root locus of given transfer function and to find out S, Wd, Wn at given root \& to discuss stability.
		Eigen values and Stability Analysis. Concept of controllability and observability		Plot bode plot of given transfer function and find gain and phase margins Plot the Nyquist plot for given transfer function and to discuss closed loop stability, gain and phase margin.
$17^{\text {th }}$	Sessional -II Examination+Activity			

